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SUMMARY

This report describes the research performed during two

years of support by the AFOSR under grant number AFOSR-86-0136.

The research falls into four distinct categories:

(i) A continuation of the PI's investigation of the theory

of structure functions on continua

(ii) The construction of a diffusion model for a system

subject to continuous wear

(iii) The introduction of criteria for reliability growth

(iv) An investigation of the stability of stochastic models

The results obtained are described in detail in Sections 1-4 below.
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1. CONTINUUM STRUCTURE FUNCTIONS

A continuum structure function (CSF) is a mapping

y:a 4[0,1], where A = [0,1] n , which is nondecreasing in each

argument and which satisfies y(O,...,0) = 0 and y(l,...,I) = 1.

The theory of such functions generalizes traditional binary and

multistate structure function theory, permitting more realistic

and flexible modelling of systems subject to reliability growth,

component degradation and partial availability. CSFs were

introduced by Block and Savits [9] and Baxter (2] and subsequently

studied in [3-7], [13-15].

Define P = {xly(x) > a whereas y(y) < a for all y < x} where

y < x means that y < x but that y # x (0 < a < 1). Block and Savits

[9] prove that if y is right-continuous, i.e. if each U = {xly(x) >

a} is closed, then each P is nonempty and that the PC.'s characterize

y by means of the decomposition

y(x) = . 0max min I( yda
yEP, 1 <i<n )

where IA denotes the indicator of A.

Structure functions for which each P is finite are of

particular interest as we shall show. Intuitively, in two-dimen-

sional space, if Pf is finite, each segment of aU should be parallel

to one of the axes. This is, in fact, the case in n-dimensional

space.
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NOTATION B,(x) denotes an open ball of radius c centered at x

U(x) denotes {YlY > x}

Theorem (Characterization of Finite P.)

Suppose that U is closed (0 < a < 1). Then P is finite if and

only if there exists an e > 0 such that B,(x)AU = B,(x)AU(x) for all

xsP

The class of right-continuous CSFs for which each P is finite

may be characterized as a natural generalization of the class of

Natvig CSFs [31, the defining binary structure functions of the

latter being replaced by multistate structure functions. In order to

define this class of structure functions, it is necessary to

introduce some terminology.

Definition

Let Si = [0,1,...,Mi} for some non-negative integer Mi,
n

i = 1,2,...,n. A function h:64X S. is said to be a reduction mapping
i=l

if h(x) = (h1 (x1 ),...,hn(xn)) for all xca where

h1 :[0,1]S, is a surjective, nondecreasing, right-continu-us step

function for i = 1,2,...,n.

For each zeS i, define hTi(z) = [x[O,l1hi(x) = z); clearly,

inf h-'(z) exists and hi(inf h 1 (z)) = z. It cdn be shown that

inf h-'(z) exists, is unique and equals (inf hlI(z 1 ),...,inf h' (z.)).
n

A mapping *: X Si 4(0,i.. .,M, M > 1, which is
i=1
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nondecreasing in each argument is said to be a multistate structure

function (14SF). An MSF is said to be coherent if for any icC and
n

j > 1, there exists a zc X S. such that 0((j-l)1 1 z) < 0(j.,z) where
i=1

(j.,,z) denotes ( zl, . z i-1 + Zi 1 ,z- ) [ 12].
n n

For a reduction mapping h:6 4 x S, ,we write Sh = X S .,
i =l i=l

the range of h, and L h = {inf h-1 (ZICh'We also write

x A = ( xijhA (X) = (h (x )ch(x)IlcA1 and SA = (ZAIZCSh

where Ac:C.

Definition

C

such that

(i) h,:b 4Sh is a reduction mapping for each (xc(O,1I

(ii)4 +:S h *>(0,1) is a coherent MSF, the components of which are the

elements of Cc for each ac(0,lI

(iii) U C. = 11,2,...,n)
a C C

(iv) For each xc 6, f,(ha*(x)) *0 (h0 1O(x)) whenever a <

(0 < a~js < 1).

The function y:a-*tO,l] is said to be an F-type CSF if it

satisfies the condition

Y(x) > cc if f 0. (ha' c a(x)) = 1 (0 <a < 1)

for all xca.
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Definition [3]

A CSF y is said to be weakly coherent if

sup [Y(lirx) - Y(Oix)I > 0.

Theorem

A weakly coherent CSF is of F-type if and only if it is

right-continuous and each P is finite.

The importance of F-type CSFs is seen in the case where X., ... Xn

the states of the n components, are independent random variables.

A computationally tractable expression for *(x) = Pfy(X) xl, the

stochastic performance function, occurs only in certain special cases.

If, however, P. is finite, it can be shown that

N n n (j ) (i)
C(x) = E E Fi(y' j  E- E F.(Yi Vy ij=l i=1 J<J2 i 1

n
+ ... + (-R) f F i (max y,)))

i=l l<jN

where Fl(t) - P{X i > t}, i = 1,2,...,n, so that (x) can be easily

evaluated.

More is true. If Y is an arbitrary right-continuous CSF with

stochastic performance function *, there exists a sequence [y.} of CSFs

such that +M4+ pointwise as m4- where . is the stochastic performance

function corresponding to y.. Further, if f is continuous, the

convergence is uniform.
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A condition under which 0 is continuous is given by the following

proposition.

Definition

Write x y if x, y, and x, < y1  if y, > 0, i = 1,2,...,n.

A CSF y is said to be strictly increasing if y(x) < y(y) whenever

x y.

Proposition

If y is a strictly increasing CSF and if X is an absolutely

continuous random vector then t is continuous.

Suppose, now, that the structure function changes with time,

possibly reflecting improvements as the system is developed or changes

in the use of the system. Let yt denote the CSF at time t. Suppose,

further, that the states of the components comprise a stochastic

process [X(t), t>O}, perhaps reflecting the degradation of the

components with use or the replacement of fail-ed components.

Theorem

If X(t)9X, an absolutely continuous random vector, as t-*-

and Yt4y pointwise on a as t4-, then yt(X(t))Dy(X) as t4-.

The proof is by consideration of the set E = [x c lyt(xt) 4(x)

for some class fxt) such that lim xt = xl. It can be shown that if
t4O

t-+' pointwise as t4-, then E has Lebesgue measure zero and hence, if X

is absolutely continuous, PoX-'(E) = 0 so that, by Theorem 5.5 of

Billingsley [8, p. 341, the result follows.
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Consider, now, the class {yt) of CSFs where yt:[0,i]4[0,i] is

defined by

(1 if x > 1/2 +1/t
y(x) 0 otherwise

for t>2 and the CSF y':[O,lJ[0,i] defined by

I if x > 1/2y' (x) = ix I/

otherwise.

Clearly, yt does not converge pointwise to y'. Since, however, the set

of points (viz. {i/21) at which convergence fails has Lebesgue measure

zero, and hence PoX-' mea-,ure zero if X is absolutely continuous, it is

reasonable to enquire whether there exists an alternative mode of

convergence under which yt (X(t))P+y'(X) as t4-. This motivates the

following definition.

Let A be the group (under composition) of all homeomorphisms

X: Rn 4Rn such that X(O,...,O) = 0 and I(I,...,l) = 1 and let d be the

Euclidean metric on R . For any two right-continuous CSFs yi and y2

we define

S (Y 1 ,Y 2 ) = inf( sup ni Y1 (y*) - Y2 (X(y)*)i + sup d(y*,X(y)*)
XcA ycR yeR)

where y* is the vector whose it h component is (y1 VO)Al.

It is easily verified that S is a metric on the space of

right-continuous CSFs; we call it the quasi-Skorohod metric and we call

the induced topology the quasi-Skorohod topology (QST).
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Convergence in the QST is weaker than uniform convergence; it is

neither weaker nor stronger than pointwise convergence.

Theorem

Suppose that X(t)*X, an absolutely continuous random vector, as

t+0. Suppose, further that y is a right-continuous CSF and that [yt

is a class of right-continuous CSFs such that yty in the QST as t4-.

Then yt (X(t))-y(X) as t---.

t
For the CSFs {yt ] and y' defined on page 7, it can be shown that

y'(X(t))Wy'(X) as t-+- whenever X(t)%X, an absolutely continuous random
t

vector, as t4-.

Let S. denote the intersection of 3U. and {(IO < a < 11, the

diagonal of 6. We say that S is the key vector of U. and we call the

scalar S. the corresponding key element. Kim and Baxter [13) show that

for any CSF y, the key vector always exists, is unique and, if y is

continuous, y(S.) = c for all ctc(0,1]. Kim and Baxter [13] use the key

element to define reliability importance when X is a random vector:

they define the reliability importance of component i at level cz(0,1]

as

Ri (a) = Pfy(X) > c I X- PfY(X) (iX < S.

i = 1,2,...,n. This generalizes Birnbaum's definition of reliability

importance for the components of binary structure functions [1,

Chapter 2] to the continuum case.
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For any component i and any subset AcL, define A' = {xc61(.i,x) =

(.i,z) for some zCA}. Notice that AcA' and that A = A' if and only if

whether or not xCA does not depend on the state of component i. Let p

denote Lebesgue measure on R

Definition

Let y be a CSF and Ir zX[O,l]. We say that component i is

almost irrelevant to y at level a if there exists a subset E cL such

that P(Ec) = 0 and U nE = (U nE)'NE Further, if component i is

almost irrelevant to y at level a for all ac[0,1], we say that it is

almost irrelevant to y.

It can be shown that component i is almost irrelevant to y if and

only if there exists a CSF y' such that y' = y a.e.[u] and

sup[y(lix) - Y(0 ,x)] 0.

Before proceeding to a study of properties of Ri (c), it is

convenient to deduce sufficient conditions under which

0 < P(X > 6.} < 1 for 0 < a < 1. It can be shown that the conditions

that y is continuous at (0,...,0) and (i,...,i) and that the support of

each X. is the unit interval are sufficient to ensure that

0 < P{X1 > 6.1 < 1 for 0 < a < 1.

Theorem

Suppose that the CSF y is continuous at (0,.. .,0) and (i,...,l)

and that X ,...,Xn are independent, absolutely continuous random

variables, the support of each of which is the unit interval. Then for
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all ac(0,i) and each i = 1,2,...,n, R i (a) = 0 if and only if component

i is almost irrelevant to y at level a.

Definition

A CSF y is said to be strongly increasing if y(x) > y(y) whenever

xi > Yi for i = 1,2,...,n.

Define a function 6:[0,114[0,11 by 6(a) = 6 where 6 is the key

element of U.. We call 6 the key function of y. It is easily seen

that 6 is well defined, nondecreasing and left-continuous, and is

continuous if y is strongly increasing.

Theorem

Let y be a strongly increasing CS1 which is continuous at

(0,...,0) and (i,....l) and suppose that xl,...,X n are independent,

absolutely continuous random variables, the support of each of which is

the unit interval, then R (a) is continuous cn (0,I) for i = 1,2,...,n.
1

It is of interest to determine when one component is uniformly

more important than another, i.e. when Ri(a) R. (a) for all a, c.f.

Theorem 2.1 of Natvig [17].

Definition
Let y be a CSF and let 6 denote the key element of U.. We say

that component i is connected in series (parallel) to the remainder of

the components if, for all ac[0,1], xcU => (<=)x, > 6.
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In the special case when y is a binary structure function, this

definition reduces to the usual definitions of being connected in

series and in parallel.

Theorem

Let y be a CSF which is continuous at (0,...,0) and (i,...,l) and

suppose that Xl,...,X n are random variables each with support the unit

interval. If component i is connected in series to the remainder of

the components and if x. t x., then R (a) > R (a) for all ac(0,i),

j 0 i.

Notice that it was not necessary to assume that X1 ,...,X n are

mutually independent.

Theorem

Let y be a CSF which is continuous at (0,...,0) and (l,...,l) and

let Xl,...,X n be independent random variables, each with support the

unit interval. If component i is connected in parallel to the remainder

of the components and if X i 5t X3 , then Ri('a) > R (a) for all

OLE(0,1), j o i.

The algorithm previously introduced to calculate f(a) can easily

be modified to evaluate Ri(c).

11



2. A DIFFUSION MODEL

This section introduces a model for a system whose state changes

continuously with time, perhaps reflecting continuous wear. It is

assumed that the state of the system is initially x0 >O and thereafter

follows Brownian motion with negative drift and an absorbing barrier at

the origin. It is further assumed that the state of the system is

increased by a repairman who arrives according to a Poisson process of

rate X>O; if the state of the system when the repairman arrives exceeds

a threshold a (O<a<x 0 ), no action is taken, otherwise the repairman

instantaneously increases the state by a random amount Y where Y>C

almost surely.

Let X(t) denote the state of the system at time t, t>O, let

F(x,t) = P{X(t)<x} denote the distribution function of X(t) and suppose

that the corresponding density f(x,t) = aF(x,t)/ax exists for x>O.

Since fX(t), t>O) is a diffusion process with jump discontinuities, it

is a special case of the model analyzed by Feller [i] and hence, from

equation (27) of Feller [11], we obtain the following integro-

differential equation (valid for x>0):

(*) f(xt) = o 2  f(xt) - 'U a f(x t) - XI f(x ,t)at ax '

+ Xf"I(x z< f(x-z,t)g(z)dz + XF(O,t)g(x)

where p and o2 are the parameters of the Brownian motion (p<O,a>O) and

g is the density of Y.
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Feller [11] has obtained the general solution to integro-

differential equations of the form (*), but his solution is extremely

difficult to apply, and hence a different approach was adopted: an

explicit formula for F(x,t), O<x<a, was obtained by a purely probabi-

listic argument which does not make use of (*), and these results and

(*) were used to obtain an expression for the Laplace transform of

f(x,t). The distribution function of X(t) is

F(x,t) = ftB(x,t-u)e-X t-L)dH(u) (O<x<a)

where

1exp 2a ( exp dz (x>0)a VT n 2 cyt a2 2 cyt-

and where

H(t) =W x  , C(t) + Z W ,a*K (n ) (t)

n=l 0

where the asterisk denotes Stieltjes convolution and the superscript

denotes n-fold recursive Stieltjes convolution. An expression for K is

given by the following formula:

K(t f Wu,.(s) e X (t-s)dV(u)ds

where

13



V(x) = JffXB((x-y)Aa,t)Xe Xtg(y)dydt

+ j0 [B(x,t) - B(a,t)]Xe- dt

and where

Wab(t) = ft a-b +x)2/2a2 xdx.

An expression for F(x,t), x>c, cannot be obtained by an analogous

argument. One may, however, solve (*) to yield an expression for the

Laplace transform of f(x,t). This is uninformative and awkward to deal

with but, for the stationary distribution, viz. F(x) - lim F(x,t), an
t4w

explicit expression may be obtained. This may be differentiated to

yield (admittedly clumsy) formulae for the stationary mean and

variance.

The preceding analysis can readily be extended to the case where

the repairman arrives according to a stationary renewal process in

which the distribution function of the inter-renewal times is Q, say.

Define T0 = inf(t(X(t) = 01, the first passage time to state 0.

We deduce expressions for the distribution function of T. and for E(T0 )

and we derive the limiting distribution of T. as a4w.

Let p be the probability that when a repair is performed, the

system is at state 0. Clearly, defining P(t) = f05(u)du/jfQ(u)du,

p - fB(0,t)dP(t)/fB(a,t)dP(t)

Observe that T, satisfies the following relation:

14



n n

To = S, + E y = + E S. with probability p(I-p)n
o i=l 1 0 i=l i

for n 0,1,2,.... where Y. Z Y for all i, where S, is the first

passage time from a>0 to 0 in Brownian motion and where a- denotes

equality in distribution. It is readily seen that

P{Si t) = foWy. 0 (t)dG(y) = D(t), say,

and hence the distribution function of To , L(t) say, is given by

L(t) = Z Wx, 0 *D ( n  (t)p(I-P)n

n=O 0

where D (0 (t) is the Heaviside function and W, 0 is the distribution

function of S,* Now
an

E(T ° ) Z [E(Sx ) + nE(SY ) ]p(l-P) n

n=O 0

Since E(S.b) - (b-a)/u, and hence

E(Sy) ; .fE(S )dG(y) = -m/p,,

it is easily seen that

E(To) = -[px O + m(l-p)]/pp

where m = E(Y).

15



Theorem

As a4-, T0 /E(T 0 ) converges in distribution to a unit exponential

variate.

Now we deduce an expression for I X (t i ,t 2 ) =

P[X(t) > x for all t [t l, t 2 ]).

Consider, firstly, the case x > a. The first passage time from

X(t i ) to x is equal in distribution to Sxl t 1-x* Hence, if Wa b
1

denotes the distribution of Sa-b, the first passage time from a to b

2
in Brownian motion with parameters p and a (a > b)

ITx(tilt ) -- W. (t -t )dyF(y,t .

Consider, now, the case x < c. Let {Z,(t), t > 0) denote

2
Brownian motion with parameters p and a , an absorbing barrier at

x and initial condition Z,(O) = a. Let BX(y,t) = P[Z.(t) < y) denote

the distribution function of ZX(t) and let Tyx be the first passage

time from y to x in the process {X(t), t > 0). It can be shown that

the distribution function of Ty Y, Ly ,(t) say, is given by

L YX t) E W *D n (t )Px (l- p")

n=0 Y"

where p. = JB(x,t)dP(t)/f'Bx(at)dP(t). Hence,

HX (t i Ot 2 )  = Yy. (t 2 -t 1 )dYF(y,t1 ).

16



It is henceforth assumed that the process {X(t), t>0} is

stationary, and that the repairman arrives according to a Poisson

process of rate X. Let C1 denote the cost per visit of the

repairman, let C2 denote the cost of a repair (this may depend on the

distribution of Y) and let C 3 denote the cost per unit time of the

system being in state 0. We calculate C(X), the average cost per

unit time over an infinite horizon for a given arrival rate X. To do

so, it is convenient to define the following random variables:

N, = number of visits by the repairman in a cycle

N2 = number of repairs performed in a cycle

T, = cumulative time spent in state 0 in a cycle

where, by a cycle, we mean the interval between two successive

instants at which the state of the system first crosses the threshold

c from above following a visit by the repairman (recall that the

sequence of such instants comprises an embedded renewal process).

The duration of a generic interval is denoted T*. It is clear that

N =I and that T1 = f I~zltlo0dt where T is an exponential

variate with parameter X and {Z(t), t 0) denotes Brownian motion with

2
parameters # and a , an absorbing barrier at the origin and initial

condition Z(O) - a.

It is easily seen that E(Ni ) = XE(T*). Further, E(N 2 ) =
-=e (X)

P(Z(T) < al and it can be shown that E(Tz ) = e ' /X where

91 (X) - [#+(#+2\0
2 )1/2]/U2

Let C(X) denote the average cost per cycle for a given arrival

rate X. By the foregoing,

17



C(X) = C1 XE(T*) + C2 q(X) + C3 e /X.

Then C(X) = C(X)/E(T*) and, since E(T*) = e /X -mq(X)/p,

it follows that
- e (X)

C) = C X + C2 Xq(X) + C 3
1-=e ( X)

1 -Xmq(X)/p

where

e2 (X) -e1 (X)exp{f(e 2 (X)-el (X)II
e2 (X) - e1 (X)

and where e2 (X) = f-(/j+2Xah ) ' 2 ]/C2, for X>O; by continuity, we

define C(O) = C3 .

We seek to minimize C(X) by varying X.

Firstly, we consider the case C1 = 0.

Theorem

If C2 > -mC 3 /#, then C(X) achieves its minimum value, C 3 , at

X=O, otherwise C(X) decreases monotonically to -pC2 /m as X4-.

Now we consider the general case.

Theorem

If C1 + C2 _ -mC3 /,U, then C(X) achieves its minimum value, C3 ,

at X-0, otherwise there exists a unique X* (0<X*<-) which minimizes

C(X).

18



For the case cx=O, we can obtain an explicit expression for X*.

Theorem

Suppose ca=O. if C1 + C 2 > -MC 3 /lp, then C(X) achieves its

minimum value, C 3 P at X=O, otherwise C(A') is minimized at

=C 1 I C I ( C2 +mC 3 /p

19



3. RELIABILITY GROWTH

Let {N(t), t>01 be a stochastic point process; we identify the

points of {N(t), t>0} with the failures of a system. Our concern

is with systems which exhibit reliability growth, i.e. systems

whose reliability increases in time. We model such systems by

stochastic point processes, the points of which become "scarcer"

according to various criteria introduced in this section. Define

the intensity function h(t) = lim P{N(t+6) - N(t)>016 - 1 and say that
60+

[N(t), t>01 is orderly if P{N(t+6) - N(t)>lj = o(6) for all t>0. Let

H(t) = E[N(t)] denote the expected number of failures in (0,t], let

Xn denote the time from the (n-i) t h failure to the nt h failure

(n>2), X1 being the time to the first failure, and define
N(t)+l

the forward recurrence time at t as y(t) = X - t.
i=l

The following four criteria for reliability growth are posited:

C1 N(t+s) - N(t) is stochastically decreasing in t for all s>0

C2 y(t) is stochastically increasing in t

C3 X is stochastically increasing in n

C4 H(t)/t is nonincreasing in t.

The relationships between these criteria are as in the following

diagram; no other implications hold.

Cl

C2 , c4

C3

*for orderly processes only.

20



By way of illustration, these criteria are applied to three

models: the initial faults model, the nonhomogeneous Poisson process

(NHPP) and the renewal process.

The Initial Faults Model

Suppose that there are initially N faults in the system, each of

which will eventually give rise to a failure. The times until the

failures actually occur are assumed to be independent random

variables, each with distribution function F, so that N(t) -

Bin(N,F(t)). The sequence of times at which a failure occurs is

distributed as the order statistics corresponding to N independent

observations of a random variable with distribution function F. It

can be shown that a sufficient condition for Cl, C2 or C3 to hold is

that F is DFR, and it is obvious that C4 holds if F(t)/t is

nonincreasing in t.

The Nonhomogeneous Poisson Process

Let {N(t), t>O) be an NHPP with hazard function X(t) =

dE[N(t)]/dt. A sufficient condition for CI, C2 or C3 to hold is that

X is nonincreasing, i.e. that F, the distribution function of the

time to the first failure, is DFR. Further, C4 holds if F is DFRA.
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The Renewal Process

Brown [10] proves that a renewal process in which the

distribution of the inter-renewal times is DFR satisfies Cl, C2 and

C4. Trivially, any renewal process satisfies C3.

Theorem

Criteria Cl, C2 and C4 are preserved by the formation of series

systems whereas criterion C3 is not.
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4. STABILITY THEORY

No stochastic model is a true representation of an actual

physical phenomenon: assumptions such as independence, equality in

distribution, exponentiality etc. are seldom satisfied in practice.

It is therefore of interest to investigate the stability of such

models, i.e. to determine how a violation of the assumptions affects

the properties of the model. Let V denote the class of all "input"

to a stochastic model and let Y1 denote the corresponding class of

"output". Thus, for example, in a GI/G/l queue, Uc2/ would comprise

the arrival process and the sequence of service times whereas VEf

w'jild be, for example, the sequence of waiting times. Letk* be the

class of "perturbed" "input" and letl'* be the corresponding "output"

class. Then a stability analysis would be to determine conditions

under which

p(U,U*)<c => P(V,V*) < 6(c)

where c>O, 6(c)>0 and p is a probability metric, typically the

uniform metric, on the space of distribution functions (for

simplicity, we write p(X,Y) to denote the distance between the

distribution functions of X and Y).

We now present two stability analyses: one of a

characterization of the bivariate Marshall-Olkin distribution and one

of the estimation of the mean of the (univariate) exponential

distribution.

Recall that if G(x,y) = P{X 1 >x,X 2 >y} denotes the bivariate

survivor function of (Xi,X 2 ), the Marshall-Olkin distribution is
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defined by

G(x,y) = expf X~x - X'y - X, 2 max(x,y))

for X1 ,X 2 >0, X 12 0O and x,y>0 (e.g. Marshall and 01kir [163).

Let B denote the class of all bivariate survivor functions of

pairs of nonnegative random variables. For GCB, define the hazard

vector (h1 (t), h 2 (t)) =V [-logG(t,t)], assuming that this exists, and

write Hjx,y) = -alogG(x,y)/@X, H 2 (x,y) = -alogG(x,y)/ay and c=

H (0,0) + H2 (0,0). The corresponding hivariate M.arshall-Olkin

distribution is defined as

6(XY(exp{-cy - h1 (O)( x-y)l if x>y

exp{-cx - h 2 (O)(y-x)) if X<Y,

i.e. G is the bivariate survivor function of the Marshall-Olkin

distribution with X,= c- h 2 (0)1 X 2 = c-h(0)and X1 2 =

h1 (0) + h 2 (0) - c. Notice that if (XX 2) has survivor function G,

then E(X) 1 /h (0) and E( X 2 ) = 2/[~h (0)] 2 (i=1,2) and F(X1 X2

(l/h1 (0) + 1/h 2 (0)J/c.

Defini tion

Suppose that GcB, the survivor function of (X1 ,X 2 ), satisfies

the inequalities

(i) G(x+t,y+t) S G(x,y)G(t,t) for all x,y,t 0

(ii) G1 (x+t) G1 (x)Gi(t) for all x.,t 0 where G. is the survivor

function of xi (i=1,2).
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Then G is said to be weakly bivariate NBU (WBNBU). Further, G is

said to be WBNBU* if G is WBNBU and if the partial derivatives

3G(x,y)/9x and aG(x,y)/ay exist.

Define

O(G) = [I/h(O) - E(XJ)] + [1/h2 (0) - E(X2 ]

2 2

+ [2E(X ) - h (O)E(X 2)] + [2E(X 2 )-h2 (O)E( X 2  )

+ 4[E(X i ) + E(X2 ) - cE(X 1 X2 )/c.

Theorem

If G is WBNBU*, then G is Marshall-Olkin if and only if

1(G) - 0.

We now quantify the stability of this characterization by

deriving a bound on the uniform distance between an arbitrary WBNBU*

survivor function G and the corresponding Marshall-Olkin survivor

function G.

Theorem

p(G,G) _ (1+c e )[ (G) for all GeB.

Suppose that Y is exponentially distributed with probability

density function (p.d.f.)
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1 e-X/. (x>O;P>O).fY(x) = e

To perform hypothesis tests on u, one makes use of the fact that, if

Y 1IY 2 1 ... FYn are n independent, identically distributed random
n 2

variables, each with p.d.f. fy, then 2 E Y /P _ X2 n  In practice,
i=l

the assumption of exponentiality is only an approximation; it is

therefore of interest to enquire how well the X2 distribution
n

approximates that of 2 Z XI/ where X, ,X 2 ,...,X n are n independent,
i=l

absolutely continuous, identically distributed random variables with

common distribution function F× and mean u and Fx se , the class of

all possible perturbations of the exponential distribution. If

is the union of the class of HNBUE distributions and the class of

HNWUE distributions, a simple bound on the uniform distance p.7
n n

between Z = 2 Z Y/p and W = 2 E X1/p can be obtained without
i=l i=l

making any assumptions concerning the mechanism generating the

perturbation. It can be shown that

P(W nZ < 3 M 2/3 i( / )2 11 /3( n  2 1 2 / 3  n

21/

where 2 = var(X) and

v"-(n-l)n- e- (n-i
n = 2(n-l) 1

Thus, if X is HNBUE or HNWUE and if the coefficient of variation
n

of X is close to unity, then the distribution of 2 X1i/P is
i~l

uniformly close to that of the X2 distribution. In particular, the
2 n

sampling distribution of the usual test statistic for hypothesis
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tests concerning the scale parameter of the exponential distribution

is robust with respect to moderate departures from exponentiality

provided that the perturbed random variable is HNBUE or HNWUE.

Suppose, now, that no assumptions concerning are made. It is

necessary to make an assumption concerning the mechanism perturbing

the exponential variate Y. Three possible cases are considered:

(i) Mixing

Suppose that an exponential distribution is "contaminated" with

an arbitrary non-negative random variable with distribution function

H, ie.

FX(t) = (l-)et/X + s H(t)

where X is chosen so that u = (i-c)X + ca and where

a =' -ff(t)dt. It is assumed that c > 0 is small. It can be shown

that p(Wn,Z n ) 3 O(s 1/3)

(ii) Additive Error

Suppose, now, that X 1 YX + Z where Y. is an exponential

variate with mean X and Z. is an arbitrary random variable; X is

chosen so that p = X + E(ZC). It can be shown that

P(Wn ? Z ) < 1( + 1/8) [6b( 6)1' / ('+ ) [2E(IZC I)]6  I 6

where b(6) = E(IXI2+6) + E(YXI 2 +
6 ) (6 > 0) is assumed to be finite.
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(iii)Right Censoring

Lastly, suppose that X min(Y×,N) where N is a non-negative

random variable independent of Y. and where X is chosen such that

E(X) = /. It can be shown that

p(w , Zn ) < X -iu I + cX + 2c

where s = P(N<nj and where n is the solution to the equation

PIN < } = ye-/Y(n+Y),

writing y = max (X,p).

In each of the above cases, it is clear that a small

perturbation of Y (i.e. p(X,Y) is small) yields a sampling
n

distribution of 2 E XI/ which is uniformly close to that of the
i=l

2 distribution.2n
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